A theoretical essay on sustainability and environmentally balanced output growth: natural capital, constrained depletion of resources and pollution generation.

Autorde Sena, Augusto Marcos Carvalho
CargoReport

Introduction

As suggested by Boulding (1993), the well-known fact that today's production activities are imposing a heavy burden on the earth's capacity has led to an increasing interest in environmental issues. It has been emphasized that rapid production growth depletes the current stock of natural resources and damages the environment, and there are clearly limits to this process. Daly (2008) affirms that "The limits to growth, in today's usage, refer to the limits of the ecosystem to absorb wastes and replenish raw material in order to sustain the economy" (p. 9). Despite the classical 'protechnology' optimistic arguments, which assert, according to Barro (1997), that technical progress is what is needed to eliminate all constraints on production growth, the approaching exhaustion of earth's carrying capacity is an unquestionable reality. Goodland's (1992) assertions pointing out that current high levels of degradation of the earth's biomass and biodiversity and substantial increases in earth's average temperature are a cruel reality, are clear evidence of it. Furthermore, as Panayotou (1993) affirms, the amount of damage production activities have imposed on the environment (e.g. pollution) in the course of rapid growth is unquestionable. As suggested by Daly (2002), immediate actions are being called for and policy proposals have been formulated to deal with these issues, both in the political and academic arenas.

In spite of this evidence, the issues related to natural resource uses and pollution generation and their connections with sustainability have not yet been technically mastered to base decisions on this matter in practice. Therefore, this essay purposes to offer a clear definition of natural capital, relate it to a qualitative concept of sustainability, and present two pioneering analytical models of environmentally balanced output growth, explicitly considering, on the one hand, constrained exhaustion of a nonrenewable natural resource and, on the other, pollution control over an output production process. It will be seen that slowing down the pace of output production growth is a feasible way to be in 'finetune' with sustainability, for one manner to achieve this is via imposition of controls over the use of nonrenewable resources and emissions of pollution.

Thus, the main contribution of the essay is to present a new conceptual perspective, based on the qualitative-analytical apparatus used, in order to show that even allowing for the depletion of nonrenewable natural resources, it is possible to manage their uses in a way that compensation, such as augmenting the stocks of renewable natural resourses, can be conceived and total natural capital remain unchanged or even increased. An important result of this is that sustainability could be attained with no need for reducing production.

The next section presents the methodological procedures to be used, starting with a qualitative approach to the environmental literature, seeking to find a workable definition of natural capital, in order for sustainability to be appraised. An analytical apparatus used to approach two pioneering models of environmentally based output growth follows.

In Section 'Natural Capital and Sustainability: a Qualitative Conceptual Approach' we define natural capital and establish the link between it and sustainability. Section 'Environmentally Based Output Growth Models: an Analytical Apparatus' presents two pioneering models of output growth considering depletion of a nonrenewable natural resource and pollution control. Section 'Integrating the Qualitative-Analytical Approaches towards a New Conceptual Perspective on Sustainability' goes on to argue, according to the essay's main contribution, that it is possible to attain sustainability even allowing for environmental bounded damage. Section 'The New Conceptual Perspective on Sustainability: Implications to Environmental Management' focuses on implications of the analysis for environmental management and the final section gives conclusive remarks shedding light on directions for future work.

METHODOLOGICAL PROCEDURE: FROM A QUALITATIVE-ANALYTICAL APPARATUS TO A NEW CONCEPTUAL PERSPECTIVE ON SUSTAINABILITY

As far as the essay's main goal is concerned, the methodological procedure used integrates two different apparatuses. First, a qualitative approach was undertaken in order to obtain, in the environmental literature, a suitable definition of natural capital. The objective is to clearly define natural capital and connect it to sustainability. This latter concept follows the premises of the Brundtland Commission (1987). A set of important contributions was selected to that end, such as, Lima (1999); Daly (2002, 2004, 2005, 2008); Lawn (2006); Turner, Brouwer, Georgiou and Bateman (2000); Sahu and Choudhury (2005); England (2006); Costantini and Monni (2008); and Irwin and Ranganathan (2007).

Second, an analytical approach was used in order to conceive two different models regarding optimal output production growth--one considering output production constrained by the use of a nonrenewable natural resource input, and the other contemplating pollution control over a production process that damages air quality (pollution) as output paces its path. To that end, two pioneering models of optimal output growth were intentionally selected due to their innovative approach on optimal environmentally based production growth away back in the seventies. To provide updated support for the two pioneering models used, a set of important recent contributions was used, including Geldrop and Withagen (2000); Palmada (2003); Islan (2005); Charles (2005); Comolli (2006); Auty (2007); Bretschger and Smulders (2006); and Voinov and Farley (2007); all using analytical frames jointly treating output production and environmental variables under a single approach--optimal environmentally based output growth.

The main objective of applying this methodology was to setup a way leading to a new conceptual qualitative perspective allowing for sustainability being appraised even with constrained environmental damage, e. g., via renewing renewable natural resources, as a compensating device counterbalancing the depletion of nonrenewable natural resources. Thus, the analysis to be undertaken in what follows has to be understood, under the methodological procedure here delineated, in the context of a qualitative frame (even using two analytical theoretical models) in order to reach a new conceptual construct to better understand and analyze sustainability.

NATURAL CAPITAL AND SUSTAINABILITY: A QUALITATIVE CONCEPTUAL APPROACH

A general definition of capital is very important to clearly understand natural capital. Capital here is to be considered as a stock that yields a flow of valuable goods and services into the future, as suggested by England (2006), no matter whether the stock is manufactured or natural. If it is natural, e.g., a population of trees or fish, the sustainable flow or annual yield of new trees or fish is called sustainable income, and the stock that yields it is defined as natural capital. Natural capital may also provide services such as recycling waste materials or pollution (or even erosion) control, which are also considered as sustainable income. From this definition we can see that the structure and diversity of the system is an important component of natural capital, according to Daly (2008), since the flow of services from ecosystems requires that they function as whole systems. Irwin and Ranganathan (2007) propose an interesting action agenda showing ways to sustain ecosystem services. Another qualification has to do with the distinctive character of natural capital, income and natural resources. All three concepts are distinct, in the sense that natural capital and natural income are just the stock and flow components of natural resources.

According to Daly (2005) and Lima (1999), there are two broad types of natural capital, renewable (RNC) or active and nonrenewable (NRNC) or inactive. Examples of RNC are ecosystems and of NRNC, fossil fuel and mineral deposits. There is an interesting analogy between RNC/NRNC and machines/inventories. Renewable natural capital is analogous to machines and is subject to depreciation; nonrenewable natural capital is analogous to inventories and is subject to liquidation.

Having defined natural capital, a definition of sustainability is needed in order to establish a logical connection between them. First of all, it is important to note that, as affirmed by Daly (2004), the stock of total natural capital equals renewable natural capital plus nonrenewable natural capital.

The concept of sustainability is related to the maintenance of the constancy of the stock of total natural capital. According to Lawn (2006) and Costantini and Monni (2008), a minimum necessary condition for sustainability is the maintenance of the total natural capital stock at or above the current level. Hence, the constancy of the stock of total natural capital is the key idea behind the sustainability concept. Since the stock of nonrenewable natural capital can be depleted with use, a logical way to maintain constant total natural capital is to reinvest part of the prospects coming from the use of nonrenewable natural capital into renewable natural capital.

It is important for operational purposes to define sustainability in terms of constant or nondeclining stock of total natural capital. This is a very significant point, since sustainability implicitly incorporates the notion of intergenerational equity. According to the Brundtland Commission (1987), the primary implication of sustainability is that future generations should inherit an undiminished stock of 'quality of life' assets. According to England (2006), this broad stock of assets can be measured or interpreted in the following three ways: i) as comprising human-made and environmental assets; ii) as...

Para continuar a ler

PEÇA SUA AVALIAÇÃO

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT